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Abstract

Objectives The developments in combinatorial chemistry have led to a rapid
increase in drug design and discovery and, ultimately, the production of many
potential molecules that require evaluation. Hence, there has been much interest in
the use of mathematical models to predict dermal absorption. Therefore, the aim of
this study was to test the performance of both linear and nonlinear models to predict
the skin permeation of a series of 11 compounds.
Methods The modelling in this study was carried out by the application of both
quantitative structure permeability relationships and Gaussian process-based
machine learning methods to predict the flux and permeability coefficient of the 11
compounds. The actual permeation of these compounds across human skin was
measured using Franz cells and a standard protocol with high performance liquid
chromatography analysis. Statistical comparison between the predicted and
experimentally-derived values was performed using mean squared error and the
Pearson sample correlation coefficient.
Key findings The findings of this study would suggest that the models failed to
accurately predict permeation and in some cases were not within two- or three-
orders of magnitude of the experimentally-derived values. However, with this set of
compounds the models were able to effectively rank the permeants.
Conclusions Althoughnotsuitable foraccuratelypredictingpermeationthemodels
may be suitable for determining a rank order of permeation, which may help to select
candidate molecules for in-vitro screening.However, it is important to note that such
predictions need to take into account actual relative drug candidate potencies.

Introduction

The developments in combinatorial chemistry and high
throughput screening have led to a rapid increase in drug
design and discovery and, ultimately, the production of many
potential molecules that require evaluation. As such, the use
of empirical or traditional screening methods such as in-vivo
and in-vitro testing is often restricted due to the time and cost
involved. Thus, modern drug selection requires rapid and
cost effective methods that are applicable to a large number of
samples, one example being the use of mathematical models.
Hence, over the last 25 years there has been much interest in
the use of such models to predict dermal absorption in silico.

It is well established that the physicochemical properties of
a molecule exert a substantial effect on its permeability, and as
such formulation scientists have been tempted, especially in

the pharmaceutical arena, to find the most promising candi-
date molecules by using a mathematical relationship between
percutaneous permeation and molecular parameters. Gener-
ally this involves the use of the discrete descriptors of a mol-
ecule, such as lipophilicity (most commonly expressed as log
P, the logarithm of the octanol-water partition coefficient),
hydrogen bonding, molecular weight (or size), melting point
and solubility parameter, often in the form of a quantitative
structure permeability relationship (QSPR).[1–10]

For many QSPRs, regression analysis is the statistical
method of choice.[11–13] However, there are a number of dis-
advantages to using this method, which have been addressed
in detail previously.[14] Firstly, it is a linear technique, and
secondly, it may be adversely affected by any co-linearity
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between seemingly independent variables such as log P and
molecular weight. Despite the large body of literature that
exists in this field, recent research has suggested that methods
based on linear regression analysis may not be an entirely
suitable tool for the development of QSPRs; nor is it clear
whether linearity is appropriate for the modelling of highly
hydrophilic and hydrophobic molecules. For example, Moss
et al.[8] compared the statistical accuracy of Gaussian pro-
cesses (GP), single linear networks and QSPRs by a range of
statistical methods, and found that the underlying nature of
the dataset was inherently nonlinear (i.e. the data were mod-
elled by a function which was a nonlinear combination of the
model parameters and was dependent upon one or more
variables) and that skin permeation (as represented by Kp,

which describes the rate of permeant transport per unit con-
centration, given in units of distance/time (e.g. cm/h)) was
best described, in purely statistical terms, by GP approaches.

A range of nonlinear methods have been employed to
investigate predictions of skin absorption. Artificial neural
networks have been investigated and showed good predictive
ability.[15] However, artificial neural networks are a somewhat
limited method in that they have a tendency to over-fit where
large numbers of physicochemical descriptors exist, com-
pared with the data points used. Such models are often
weighted and are susceptible to over-training.[16] GP methods
do not alleviate all these issues, but minimise them, report-
edly providing better predictions of percutaneous absorption
than existing models.[8,10,17,18] Moreover, Lam et al.[10] demon-
strated that a certain degree of inter-changeability existed
between physicochemical parameters used for developing
models of percutaneous absorption, and that the develop-
ment of models which explicitly represent their output as a
defined equation, with discrete parameters, may not, from a
mechanistic point of view, entirely represent the underlying
nature of the skin absorption process.

In addition, the datasets used to develop the models
described above have been derived from experimentally-
derived permeation data.[19–23] The quality of such
experimentally-derived data relies upon the quality of the
experiments performed and some form of standardization of
the methodologies. A clear example of this is the difference
between the Potts and Guy[3,21] models, which employed dif-
ferent datasets (the latter model examining a subset of the
former model’s dataset) and yielded two models that provide
two very different representations of skin absorption.

Therefore, the aim of this study was to test the performance
of both linear and nonlinear models to predict the skin per-
meation of a series of 11 candidate test compounds belonging
to the same therapeutic class. As these compounds were
chosen from different chemical classes they represented a
wide range of physicochemical parameters but were within
the scope of the models, and the datasets which were used
to derive them.

Materials and Methods

Materials

Ammonium hydrogen carbonate was purchased from Sigma-
Aldrich (Gillingham, Dorset, UK). Disodium hydrogen
phosphate was supplied by Fluka (Gillingham, Dorset, UK).
Acetic acid, glycerol and polyethylene (PEG) 400 were
obtained from Merck (Merck Chemicals Ltd., Nottingham,
UK). Brij 98 was provided by Croda (Croda Europe Ltd.,
Snaith Goole, East Yorkshire, UK). Phosphate buffered saline
(PBS) was purchased from Oxoid (Basingstoke, Hampshire,
UK). Citric acid anhydrous was purchased from VWR (VWR
International, Lutterworth, Leicestershire, UK). High perfor-
mance liquid chromatography (HPLC) grade acetonitrile was
purchased from Fisher (Fisher Scientific, Loughborough,
Leicestershire, UK). Human skin was donated from a healthy
volunteer following approval by the Schools of Pharmacy
and Postgraduate Medicine Ethics Committee with Del-
egated Authority (Study Ref. No. PHAEC/09–23). Validated
Franz permeation cells were donated by MedPharm Ltd.
(Guildford, UK). Deionised water was obtained from a
Millipore Water Purification system (MilliQ, 18.2 MW).

All of the test compounds utilised in the skin permeation
studies were provided by Nycomed (Konstanz, Germany).
Their physicochemical properties are summarised in Table 1.

Mathematical prediction of skin absorption

The modelling in this study was carried out by the application
of a combination of QSPRs and GP-based machine learning
methods.[3,8,10,24]

Potts and Guy (1992) model

The Potts and Guy (1992) equation is summarised in equa-
tion 1 for the calculation of the permeation coefficient across
the epidermal membrane:

K cm h anti

K MW

p

o w

/ log .

. log ./

( ) = − +(
− )

3600 6 3

0 71 0 0061
(1)

Where Kp is the permeation coefficient of the drug across the
epidermal membrane (eqn 1), MW is the molecular weight of
the compound, and log Ko/w is the octanol/water partition
coefficient.[3]

Equation 1 was employed for the Potts and Guy model in
this study so that comparison could be made with the Kp value
calculated using other methods, discussed below.

Wilschut–Robinson model

The Wilschut–Robinson model is shown in equation 2.[24]

This model considers the heterogeneity of the skin by calcula-
tion of different permeation coefficients for the lipid fraction
(Kp,sc; eqn 3) and the protein fraction (Kpol; eqn 4) of the
stratum corneum, and through the hydrophilic epidermal
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layer (Kaq; eqn 5), before calculation of the overall permeation
coefficient (Kp; eqn 2).

Overall permeation coefficient:

K cm h

K K K

p

p sc pol aq

/

,

( ) =

+
+

1
1 1 (2)

Where Kp is the overall permeation coefficient (eqn 2), Kp,sc is
the permeation coefficient of the compound through the
lipid fraction of the stratum corneum (eqn 3), Kpol is the per-
meation coefficient of the compound through the protein
fraction of the stratum corneum (eqn 4), and Kaq is the per-
meation coefficient of the compound through the watery
epidermal layer (eqn 5).

The permeation coefficient of the compound through the
lipid fraction of stratum corneum is described by equation 3:

log . . log

.
, /

.

K x K

x MW
p sc o w= − + −1 326 0 6097

0 1786 0 5 (3)

The permeation coefficient of the compound through
the protein fraction of stratum corneum is described by
equation 4:

K
MW

pol = 0 0001519.
(4)

The permeation coefficient of the compound through the
watery epidermal layer is described by equation 5:

K
MW

aq = 2 5.
(5)

Moss and Cronin[14] quantitative
structure-permeability relationship model

The QSPR by Moss and Cronin[14] was employed in an
attempt to correlate the structural or property descriptors of

the compounds with the prediction of skin permeation. This
model is summarised in equation 6:

K cm h anti MW

K HBA

p

o w

/ log ( . .

. log . ./

( ) = − − +
− −

2 55 0 00389

0 357 0 02 0 1077 HBD)
(6)

Where Kp is the overall permeation coefficient (eqn 6), HBA
is the hydrogen bond acceptor group, HBD is the hydro-
gen bond donor group, MW is the molecular weight of
the compound, and log Ko/w is the octanol/water partition
coefficient.

5f model

The final QSPR-type model employed in the calculation of
the permeation coefficient (Kp) was the 5f model (eqn 7).[25]

This model incorporates the solubility parameters (SP) as
predicted using Fedors solubility parameter.[26]

K cm h anti MW
SP K

p

o w

/ log ( . .
. . log .

( ) = − − −
+ −

2 236 0 00388
0 01367 0 2634
00 0787 0 01136. . )HBA HBD−

(7)

Where Kp is the overall permeation coefficient (eqn 7), HBA is
the number of hydrogen bond acceptor groups, HBD is the
number of hydrogen bond donor groups, MW is the mole-
cular weight of the compound, log Ko/w is the octanol/water
partition coefficient, and SP is the solubility parameter
calculated using Fedors’ model.[26]

Gaussian process regression

GPs are non-parametric methods of modelling. They do not
output a specific functional representation of the data, as the
methods used to generate QSPR models do, in the form of an
explicit mathematical relationship with discrete, statistically
significant parameters. In GP modelling it is assumed that the
underlying function that produces the data, f(x), remains

Table 1 Physicochemical properties of the 11 test compounds tested for skin permeation

Compound
number

Aqueous
solubility
(mg/ml)

Solubility
in donor
fluid (mg/g) Log P

Molecular
weight
(g/mol)

Solubility
parameters
by Fedors

Number of
hydrogen bond
acceptors (HBA)

Number of
hydrogen bond
donors (HBD)

1 0.00062 6.8 3.96 403.22 14.0739 7 1
2 0.57747 25.88 2.65 412.48 12.2706 7 1
3 0.25879 0.215 0.94 470.52 15.9180 10 0
4 1.41877 15.955 1.82 383.45 12.8590 7 1
5 0.03606 2.68 3.00 508.57 15.7335 10 0
6 0.41668 14.49 1.93 462.98 13.6399 8 2
7 0.00093 1.2 4.09 489.58 11.2123 6 0
8 0.00039 0.07 3.02 436.52 11.9148 5 1
9 0.00298 0.245 3.50 465.55 11.5695 6 1

10 0.01048 15.93 4.80 436.62 9.9744 3 0
11 0.00001 0.805 5.13 817.01 12.6723 9 0
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unknown, but that the data are produced from a (infinite)
set of functions, with a Gaussian distribution in the func-
tion space.[8,17]. A GP is characterised fully by its mean and
the covariance function. The mean is normally considered
to be the ‘zero everywhere’ function, and the covariance
function, k(xi, xj), expresses the expected correlation between
the values of f(x) at the two points xi, xj, defining nearness,
or similarity, between data points. The mean at x* is given by
equation 8:

E y k K I yT
n* *⎡⎣ ⎤⎦ = +( )−σ 2 1

(8)

Where k* denotes the vector of covariances between the test
point and Ntrn training data, K denotes the covariance matrix
of the training data, σ n

2 is the variance of an independent

identically distributed Gaussian noise, which means that
observations are noisy, k*

T is the transpose of k*, and I is the
identity matrix, finally, y denotes the vector of training
targets. The variance, at x*, is given by equation 9:

var * ( *, *) * *y k x x k K I kT
n⎡⎣ ⎤⎦ = − +( )−σ 2 1

(9)

Where k(x*, x*) is the variance of y*.
In this study, the mean has been used as the prediction and

the variance as error bars on the prediction.

Rate of permeation (flux) calculations

The predicted rate of permeation (maximum flux or Max J)
of the compounds through the skin (flux, mg/(cm2.h)) was
calculated, using equation 10:

Max J K x Sp= (10)

Where Max J is the maximum flux (in mg/(cm2.h)), S is the
solubility (in mg/ml), and Kp is the permeation coefficient
(in cm/h).

Human skin preparation

Human skin was sourced from one single donor with full
ethics permission (BMSEP08/05/04E2, female Asian aged 60)
via a cosmetic reduction surgery (taken from an abdomino-
plasty) and was prepared using the method described by
Kligman and Christophers.[27] Full thickness skin previously
frozen (–20°C) was defrosted at ambient temperature until
malleable, at which time the subcutaneous fat was removed
mechanically by blunt dissection. The skin was then
immersed in deionised water heated to 60°C for 45 s. The epi-
dermal membrane (comprising the stratum corneum and
epidermis) was removed from the underlying dermis using a
gloved finger and the dermis discarded and then floated
(stratum corneum side up) in deionised water and onto filter
paper. The epidermal membrane mounted on filter paper was

removed from the deionised water, any excess water was
removed using tissue and the epidermal membrane was
either used immediately or stored at –20°C until use.

Test compound in-vitro skin
permeation studies

Static vertical Franz type diffusion cells (MedPharm Ltd.)
with a diffusion surface area of approximately 0.6 cm2 were
individually calibrated. The epidermal membrane was sand-
wiched between the donor and receiver chamber of the diffu-
sion cells, which were then sealed with Parafilm. The receiver
chamber was then filled with the receiver fluid (pH 5
phosphate-citrate buffer containing 20% PEG 400 and 2%
Brij 98) to ensure sink conditions were ensured. A small
PTFE-coated magnetic stir bar was placed inside the receiver
chamber through the sampling arm and driven by a motor-
less stirrer plate. After cell equilibration at 37°C for one hour,
infinite doses (100 ml) of saturated solutions (PEG 400 : glyc-
erol (50 : 50)) of all 11 candidate molecules were applied to
the surface of each epidermal membrane (n = 6 per candidate
molecule). At predetermined time intervals (1, 3, 5, 10, 22, 26,
30, 34 and 48 h), 100 ml was removed via the sampling arm
from the donor chamber points with a 100-ml Hamilton
syringe and the candidate concentration measured by HPLC.
The sample volume was replaced by an equivalent volume
of fresh receiver fluid to maintain a constant volume. The
permeation studies lasted a period of six weeks.

High performance liquid
chromatography analysis

Samples were stored at 2–8°C before analysis using a Waters
2695 Alliance HPLC system with Waters 996 Photo-diode
array detector using Waters Empower2 Data Processing. The
column used was a Phenomenex Gemini C18, 50 ¥ 4.6 mm,
5 mm, 110 Å fitted with a SecurityGuard Analytical Cartridge
Holder (4 mm) and Gemini Security guard cartridges
(C18, 4 ¥ 3.0 mm) maintained at 50 � 2°C with an injection
volume of 10 ml. For all candidate molecules a gradient
method was used comprising mobile phase A (ammonium
hydrogen carbonate (20 mm, pH 7.8)) and mobile phase B
(100% acetonitrile).

For test compounds 1, 7, 10 and 11 the gradient was
0–30 min 90–20% mobile phase A; 30–32 min 20–90%
mobile phase A, which was then maintained for a further
8 min. The detection wavelengths for the four candidates
were 248, 300, 257 and 316 nm, respectively. For test com-
pounds 2, 3, 4, 5, 6, 8 and 9 the gradient was 0–25 min
90–31% mobile phase A; 25–26 min 31–90% mobile phase A,
which was then maintained for a further 4 min. The detection
wavelengths for the seven candidates were 230, 316, 235, 317,
317, 235 and 316 nm, respectively.
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Data analysis

The cumulative amounts of the candidate molecule (mg) pen-
etrating the unit surface area of skin (cm2) were corrected for
sample removal and plotted against time (h). Steady-state
flux was calculated using the linear regression of the cumula-
tive amount per unit area (mg/cm2) against time comprising
five time points from t = 22–48 h for each compound (linear-
ity of r2 � 0.98) using Microsoft Office Excel 2003.

Kp and flux calculations

For the mathematical predictions, Kp is predicted and thus the
predicted flux was calculated using either equation 11 or 12
based on aqueous solubility and mean saturated solubility
in the donor fluid, respectively:

Predicted flux Predicted K aqueous solubilityp= × (11)

Predicted flux Predicted K mean of saturated

solubility in donor

p= ×
ffluid

(12)

The experimental Kp was calculated using equation 13:

Experimental K

Experimental flux

Mean of saturated solubility in

p

=
ddonor fluid

(13)

Performance measurements
(prediction to actual)

A number of measures of the statistical performance of the
GP models were employed.[8,10] Mean squared error (MSE)
measures the average squared difference between model
predictions yi (theoretically predicted data) corresponding
targets xi (experimental data). It is defined in equation 14:

MSE
N

x yi i

n

N

= −( )
=

∑1 2

1

(14)

Where N is the number of test data points.
The Pearson sample correlation coefficient, r, between

targets and predictions is employed to assess the extent of a
linear relationship between two datasets of a model. It is
defined by dividing the covariance of the two variables
(targets xi and model predictions yi) by the product of their
standard deviations, shown in equation 15:

r
X Y

x x y y

x x y y

x y

i ii
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ii

N
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=
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−( ) −( )
=

= =

∑
∑ ∑

cov ,

σ σ

1

2

1

2

1

(15)

Where cov is the covariance of the two variables, and s is the
standard deviation of each variable.

When results are analysed, a model that provides a low
value on MSE and a high value on the Pearson sample corre-
lation coefficient r is preferred.

Results

Predicted and actual correlation

Figure 1 depicts the amount of each test compound permeat-
ing across epidermal membrane over 48 h. Table 2 provides
the results of the modelling data for the prediction of Kp

and compares it with the Kp measurements experimentally
derived. Figure 2 provides a diagrammatic representation of
a comparison of the Kp values between the experimentally
derived data and that predicted from the five models. Test
compound 8 was observed not to permeate within t = 48 h
and therefore it has not been included. The data suggested,
albeit in a qualitative sense, that the 5f model was the best at
predicting Kp as for nearly all the candidates this model was
closest to the experimental data and this was especially true
for candidates 5, 6 and 9 where there was almost complete
overlap. For the remainder of the candidates the models
generally over-predicted the Kp values, as demonstrated
by the fact that the experimentally-derived data was at the
core of Figure 2.
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Figure 1 The mean cumulative amount of the test compounds perme-
ated per unit area against time across human epidermal membrane. The
data is presented as the mean of n = 3–6.
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This observation was confirmed statistically by the
data in Table 3, which shows the MSE results where the 5f
model was observed to outperform all the other models,
whilst GP gave the poorest correlation on this test set.
However, Table 3 shows the Pearson correlation results
obtained for the data, indicating that the degree of linear

dependence between experimental (target) values and pre-
dictions was poor amongst all models, with again the 5f
model giving the best positive linear relationship to the
experimental values, followed by the GP model. Moreover, it
could be seen that the Potts and Guy, Robinson and QSPR
models had negative linear relationships to the target values,
with the QSPR model giving the strongest negative linear
dependence.

Table 4 provides the results of the modelling data for the
prediction of flux using both aqueous solubility and donor
fluid solubility. Figure 3 provides a diagrammatic repre-
sentation of a comparison of the flux values between the
experimentally-derived data and that predicted from the
five models. The data suggested that, when aqueous solubil-
ity was used to calculate flux, all models under-predicted the
measured flux values with no model showing an obvious
benefit. This was the opposite of what was observed when
the donor fluid solubility was used and the models over-
predicted the flux values, with the 5f model being the best
performer.

However, the data presented in Tables 5 and 6 provide
a statistical evaluation of the data and suggested that when
aqueous solubility was used (Table 5) to determine the flux
then the Potts and Guy (1992) model followed by the Robin-
son model were the most accurate in terms of the Pearson
correlation with the order reversed for the MSE. the Moss
QSPR model was third in both; with all 3 models being linear
in nature. However, when donor fluid solubility was used
(Table 6) the GP model was the most accurate, in fact this
gave the best correlation of all the models and solubilities
when using Pearson’s correlation followed by the 5f model,
but the order of these two were reversed for the MSE. In both
calculations the QSPR, Robinson and Potts and Guy were the
worst performing, in descending order.

Table 2 The values of the experimental and the predicted permeation coefficient of the drug across the epidermal membrane (Kp)

Test
compound

Experimental
Kp (cm/h)

Prediction of Kp (cm/h) based on a specific mathematical model

Potts and
Guy Robinson

Quantitative structure
permeability relationships 5f model

Gaussian
process

1 7.00E-06 4.06E-03 3.11E-03 1.12E-03 3.07E-04 7.02E-04
2 4.05E-05 4.18E-04 4.65E-04 3.50E-04 1.35E-04 7.79E-04
3 1.58E-04 1.13E-05 3.06E-05 5.69E-05 1.52E-05 6.37E-04
4 1.26E-05 1.62E-04 2.01E-04 2.30E-04 1.04E-04 6.71E-04
5 2.14E-05 1.92E-04 3.05E-04 2.20E-04 3.79E-05 6.37E-04
6 3.23E-05 6.34E-05 1.09E-04 9.20E-05 4.34E-05 4.99E-04
7 1.85E-05 1.49E-03 1.63E-03 7.69E-04 2.07E-04 7.07E-04
8 0.00E+00 5.47E-04 6.12E-04 4.20E-04 1.99E-04 1.10E-03
9 1.88E-04 7.97E-04 9.00E-04 4.59E-04 1.73E-04 8.68E-04

10 3.49E-05 1.00E-02 6.97E-03 2.54E-03 9.15E-04 1.08E-03
11 4.87E-05 8.22E-05 5.00E-04 8.38E-05 1.16E-05 6.33E-04

The experimental Kp was calculated from the division of experimental flux provided in 4 by the compound solubility in the donor fluid. Table 4 also pro-
vides details of the levels of experimental variability. Please note that the test compound 8 was observed not to permeate within t = 48 h permeation
experiment, therefore the experimental Kp is zero.
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Figure 2 Comparison of experimental permeation coefficient of the
drug across the epidermal membrane (Kp) to predicted Kp using five
mathematical models. The experimental Kp was calculated from the
division of experimental flux by the compound solubility in donor
fluid. Please note that test compound 8 was observed not to permeate
within t = 48 h permeation experiment, therefore it has not been
included.
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Ranking comparison

The data detailed in Tables 2 and 4 were used to rank the can-
didate compounds in terms of Kp and flux in Tables 7 and 8,
respectively. For Kp the rank orders produced in the models
showed little comparison with the experimentally deter-
mined data. The top ranking candidate for Kp from the
models was compound 10, which ranked fifth in the
experimentally-derived data. All four of the linear models
had candidates 10, 1, 7, 9 and 8 in their top five for predicted
Kp , but only compounds 10 and 9 where in the top five for the
experimental data. The nonlinear GP model ranked three (i.e.
2, 9, 10) molecules that were in the top five determined
experimentally.

The predicted flux data calculated using aqueous solubility
gave a much closer similarity in ranking with the models. The
Potts and Guy, and Robinson models predicted all of the top
five molecules determined experimentally with the Moss
QSPR, 5f and GP predicting four out of five. The ranking
predictions were less reliable when using the donor fluid
solubility to predict flux with the Moss QSPR and 5f model
predicting four and the Potts and Guy, Robinson and GP
models predicting three of the top five molecules using the
experimentally-determined flux values.

Discussion

The findings of this study indicated a poor correlation
between a range of mathematical models and experimentally
measured permeability – of different types – for prediction of
percutaneous absorption. While experimental data has been
shown to possibly vary between experiments this study
has focussed on results from one laboratory and used skin
donated from one volunteer.[28] The experimental results also
showed a similar level of variability compared with any
number of similar studies in the literature. Therefore, while
skin from only one donor has been used there was little to
suggest that skin from this particular donor was an ‘outlier’
and the results were consistent with those expected in the
literature from compounds with similar physicochemical
properties. It may also be suggested that using skin from one
donor has, in an experiment of this nature, a significant
advantage in that it may reduce variability and allow a reason-
able comparative estimate of permeation to be made. From a

practical perspective human skin is a scarce commodity and
it is often not possible to perform such studies with skin
from multiple skin donors making the study a more realistic
comparison with that performed industrially. Therefore, the
key finding of this study was the failure of a wide range of
molecular models for percutaneous absorption to accurately
predict the permeability of a range of compounds that varied
widely in their physicochemical properties. Further, the
models each offered significantly different predictions of
permeability; while the predictions from the QSPR models
appeared to be well correlated with each other they showed
no commonality with the GP model.

The data used in this study, particularly the 11 test com-
pounds, was presented in a similar manner to many similar
studies published. Specifically, the aim of this study was to
examine the use and accuracy of models, rather than to add
to or develop those models. Addition of the chemical struc-
tures, to a group of chemicals that fit the chemical space (i.e.
the test chemicals did not exceed the boundaries of the
models) described by the dataset used for model construc-
tion, added no additional useful information, particularly as
the important physicochemical parameters used to produce
predictions has been provided in Table 1, as well as informa-
tion on penetrant solubility. Further, as Moss et al.[29] have
shown, there is little to be gained from adding more and
more data to the same ‘chemical space’ in a model, and the
possibility of skewing the data may indeed raise issues
regarding the quality of dataset construction that would not
be aided by adding more – and similar – chemicals to the
dataset. Ultimately, it may be suggested that, as the aim of
this study was to compare the accuracy of model predictions
with experimental results, the absence of chemical struc-
tures in such a circumstance neither adds nor detracts from
this work.

When flux was assessed using the aqueous solubility of the
penetrants it was under-predicted, relative to experimental
measurements, and over-predicted when the solubility of
the penetrant in the donor phase solution was used. It
also appeared that there was no obvious benefit in using
experimentally-derived donor solubility rather than the
experimentally-measured aqueous solubility in these calcula-
tions. In addition, while the absolute correlations were often
poor (in some cases, differing from the experimental data by

Table 3 Pearson correlation coefficients and mean squared error between prediction of Kp (the permeation coefficient of the drug across the epidermal
membrane) based on aqueous solubility and their corresponding experimental values for test compounds 1–11

Parameter to compare

Comparison between prediction of Kp and their corresponding experimental values

Potts and Guy Robinson
Quantitative structure
permeability relationships 5f model Gaussian process

Pearson correlation -0.1723 -0.1804 -0.1965 0.1708 0.0895
Mean squared error 1.1023E-005 5.6113E-006 7.7499E-007 8.9030E-008 1.4239E-004
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three- or four-orders of magnitude) the rank order of perme-
ability (Table 8) was relatively consistent with calculation of
flux using experimental aqueous solubility giving a much
closer rank order than that when the donor fluid solubility
was used.

In Cronin and Schultz’s[11] review of the pitfalls of QSPR
models, they listed a series of criteria for the use and analysis
of those models. Among their key recommendations were theTa
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Figure 3 Comparison between the prediction of flux based on
aqueous solubility and the solubility in donor fluid, with the experimental
flux for the test compounds. (a) Aqueous solubility, aq sol; (b) donor fluid,
donor sol. Please note that test compound 8 was observed not to per-
meate within t = 48 h permeation experiment, therefore it has not been
included.
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avoidance of extrapolation beyond the original domain of the
QSPR, appreciation of the precision of the QSPR and its
expected application in the context of the original biological
measurement (in the case of percutaneous absorption, Jmax or
Kp), a single model describing the whole process, not one that
describes single steps or parts of the dataset, the avoidance of
nontransparent QSPRs (or, in the context of this study, the
avoidance of an approach such as the‘black-box’nature of GP
models) and the correct understanding of the endpoint of the
QSPR and its intended scope of use. Finally, they recom-
mended the development of QSPRs by multi-disciplinary
groups of researchers whose expertise extends across all parts
of the study and its methodology. Their latter point was par-
ticularly well emphasised in this, and previous studies.[8,10]

It is also important to build upon Cronin and Schultz’s
comment on the fundamental nature of a QSPR or other
‘mathematical model’ of a biological process, which they
defined as a triangulation of biological endpoint data, physi-

cochemical and structural information of the chemicals of
which the dataset is comprised and a suitable mathematical
and/or statistical approach to model development. This sug-
gested that, rather than considering simply the physico-
chemical properties of a penetrant, it may be important to
consider and include biological data in the predictions.

Another key issue in the construction of a multi-
disciplinary team to examine this problem relates to the most
fundamental work that underpins the use of GP models – the
use of simple methods of data visualisation coupled with
principal and canonical component analysis. This demon-
strated the fundamental nonlinearity of the dataset used for
percutaneous absorption modelling, and highlighted the
issue with many studies that have adopted linear methods in
their analysis.[8,14,18] While these previous studies have been
benchmarked against the 1992 model of Potts and Guy[3], due
to its enormous contribution to this field and its widespread
acceptance as the first quantitative model of percutaneous

Table 5 Pearson correlation coefficients and mean squared error between prediction of flux based on aqueous solubility and their corresponding
experimental values for the test compounds 1–11

Parameter

Comparison between prediction of flux based on aqueous solubility and their corresponding experimental values

Potts and Guy Robinson QSPR 5f model GP

Pearson correlation 0.7354 0.6754 0.4763 0.4216 0.3637
Mean squared error 0.0962 0.0941 0.1096 0.1323 0.1192

Table 6 Pearson correlation coefficients and mean squared error between prediction of flux based on solubility in donor fluid and their corresponding
experimental values for the test compounds 1–11

Parameter

Comparison between prediction of flux based on solubility in donor fluid and their corresponding experimental values

Potts and Guy Robinson QSPR 5f model GP

Pearson correlation 0.3527 0.3837 0.4837 0.5095 0.9142
Mean squared error 2.3896E+003 1.1614E+003 157.3405 19.0578 75.0694

Table 7 Test compound ranking based on the experimental and the predicted permeation coefficient of the drug across the epidermal membranep)

Ranking
Test Compound ranking
based on experimental Kp

Compound ranking based on the predicted Kp

Potts and Guy Robinson QSPR 5f model GP

1 9 10 10 10 10 8
2 3 1 1 1 1 10
3 11 7 7 7 7 9
4 2 9 9 9 8 2
5 10 8 8 8 9 7
6 6 2 11 2 2 1
7 5 5 2 4 4 4
8 7 4 5 5 6 3
9 4 11 4 6 5 5

10 1 6 6 11 3 11
11 8 3 3 3 11 6

The permeation coefficient of drug across the epidermal membrane, Kp.
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absorption, iterations of that model which include non-
linear terms might provide more substantial and realistic
benchmarks.

The reasons for the discrepancies between the modelled
and measured permeation values for each of the 11 com-
pounds evaluated may have been, in part, due to the experi-
mental protocol used including the type of donor and
receiver systems, type of diffusion cell, skin source etc.
However, the methodology used was a realistic and practical
representation of what would be performed from day to day
in the pharma industry. In addition, it was apparent that
the 11 test chemicals covered a wide range of ‘chemical space’.
Therefore, as has been discussed previously, the nature of
the model, particularly if it is based on a linear regression
method, may produce an inaccurate prediction of permeabil-
ity.[8,10,18] This was shown when the predictively of the Potts
and Guy[3] equation was compared with the GP model.[9,10]

Therefore, the differences in prediction may have been in part
due to the inability of certain models to accurately predict
permeability across a wide range of chemical space, an issue
which the GP methods appeared better positioned to deal
with due to their inherent nonlinear nature as well as the size
and scope of the dataset used to construct them.[9]

Extrapolation of a model beyond its boundaries is not
common sense and a clear limitation to the applicability of
the model. It might also be suggested that, if the model is
developed from a dataset that is poorly or unevenly distrib-
uted, it might also be difficult to develop a model that is uni-
formly accurate even within these boundaries. Sun et al.[18]

demonstrated the substantial increases in covariance as the
GP models extended outside those areas of the dataset that
were highly populated. While this also implied criticism of
comparisons made between GP models and, for example,

the Potts and Guy[3] equation, it is important to demonstrate
the fallibility of models in such circumstances to avoid in-
appropriate use. This was highlighted by Moss et al.[30], who
showed how QSPR models of percutaneous absorption
failed to accurately predict the permeability coefficient, Kp,
across a range of log P-values. While those authors high-
lighted that point, they also clearly demonstrated the general
failure of prediction across the whole range under examina-
tion. In this study the failure of models to predict a wide
range of permeability (in terms of physicochemical proper-
ties) suggested that the models developed were quite poor in
terms of their generic applicability. It should also be noted
that the models developed previously (i.e. Moss et al. [8] and
Sun et al.) were based on datasets that were approximately
50% larger than those of, for example, Potts and Guy.[3]

Hence, while modelling outside the ranges of a dataset is not
desirable, the GP method appeared to be able to analyse such
data points better than linear models. Such discussions
inevitably lead onto the subject of outliers which have been
described elsewhere.[14]

One point not directly raised by Cronin and Schultz[11] was
the quality of the data used to construct the model. Inevitably,
the nature of the biological membrane used clearly has
an important role in the model that is constructed from
this data. This is well understood and discussed elsewhere,
however, it is critical to note that the quality of any model is
completely dependent upon the quality of the data from
which it was derived.[14] A superficial review of the skin
absorption literature quickly highlights the lack of unifor-
mity in skin permeation techniques used between well estab-
lished and respected groups, raising the question again of why
there is still no standardised protocols rather than guidelines
available for skin permeation experiments. In addition, an

Table 8 Test compound ranking based on experimental and predicted flux values derived from the reported aqueous solubility and solubility in donor
fluid

Ranking

Ranking based
on experimental
flux

Ranking based on predicted flux derived from aqueous
solubility

Ranking based on predicted flux derived from solubility
in donor fluid

Potts and
Guy (aq
sol)

Robinson
(aq sol)

QSPR
(aq sol)

5f model
(aq sol)

GP
(aq
sol)

Potts and
Guy
(donor sol)

Robinson
(donor sol)

QSPR
(donor
sol)

5f model
(donor sol)

GP
(donor
sol)

1 2 2 4 4 4 4 10 10 10 10 2
2 10 4 2 2 2 2 1 1 2 2 10
3 6 10 10 6 6 6 2 2 1 1 4
4 4 6 6 10 10 3 4 4 4 4 6
5 5 5 5 3 3 5 7 7 6 6 1
6 1 3 3 5 5 10 6 6 7 7 5
7 9 1 9 9 9 9 5 5 5 5 7
8 11 9 1 7 7 7 9 11 9 9 11
9 3 7 7 1 1 1 11 9 11 8 9

10 7 8 8 8 8 8 8 8 8 11 3
11 8 11 11 11 11 11 3 3 3 3 8

Aqueous solubility, aq sol; solubility in donor fluid, donor sol.
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understanding of both the size, and distribution, of the data
used to develop models might impact on the quality of analy-
sis. For example, Lien and Gao[31] analysed a subset of the
Flynn[19] dataset which comprised of 22 compounds. Other
studies have, for various reasons (i.e. Potts and Guy[21]) exam-
ined only nonelectrolytes from the Flynn dataset, selected
subsets of a larger database or examined a small number of
compounds and derived QSPR-type models. These range
from the work of Barratt[20], which examined 60 ‘small mol-
ecules and steroids’ excluding the hydrocortisone derivatives,
from the Flynn dataset, Abraham et al.[6,32] who examined,
respectively, 46 and 53 compounds, to those who analysed
substantially smaller datasets with 20, 16 (in different studies
by both Lee et al.[34] and Morimoto et al.[35]) or four com-
pounds.[33,36] In all those cases, mechanistic inferences were
drawn into the percutaneous absorption of the compounds
and, by inference, those that were chemically similar.
However, given the issues presented in this study the number
of compounds present in those datasets would suggest that
the value of those models may be limited by the amount and
quality of available data.

None of the mathematical models used to predict Kp take
into account the ionisation state of a compound, which can
ultimately affect its partitioning and diffusion into and across
the stratum corneum. However, it is also important to note
that although aqueous solubility was used to calculate flux
from the predicted Kp values, during the in-vitro permeation
studies, a nonaqueous system comprising of a mixture of
PEG 400 and glycerol was employed owing to the fact that
some compounds were observed to be unstable in an aqueous
system. In addition, a higher extent of solubility could be
achieved in this nonaqueous system for the purpose of
in-vitro assessment, in contrast to a lower achievable concen-
tration in an aqueous system. Therefore, it was assumed that
during the in-vitro permeation across human epidermal
membrane, there was no ionisation for those ionisable com-
pounds (acidic or basic) in this nonaqueous system. Thus the
lack of consideration of the ionisation state could not explain
the poor correlations observed, although this does warrant
further investigation if the practical difficulties encountered
in this study can be addressed.

Another key finding of this study was the issue of the con-
version of experimental flux data to Kp and the conversion
of predicted Kp values to flux, to allow comparison between
different models and experimental data. The measured solu-
bility either saturated in the aqueous or the donor fluid made
a marked difference in predicted permeation and the rank
order. As such, this would appear to introduce another level
of variance in the data, and also allowed a certain subjectivity
in the presentation of results. Perhaps, in addition to those
points highlighted by Cronin and Schultz[11] it should be
recommended that models of percutaneous absorption are
standardised to use either Kp or Jmax. Certainly, the latter

parameter is of substantially greater relevance to the in-use
performance of topical pharmaceutical products. It should be
noted that the model developed by Magnusson et al.[4] used
Jmax, yielding a relationship between it and the molecular
weight of permeants.

Conclusions

The findings of this study would suggest that, when tested
with a range of potential skin permeants – all of which are
generally consistent with the nature and range of the datasets
used to construct the models – the models failed to accurately
predict permeation and in some cases were not within two-
or three-orders of magnitude of the experimentally derived
values. However, the models were able to effectively rank the
relative permeation of the permeants which, while not
entirely the point of the models, was an effective outcome for
selecting an optimal lead candidate and suggested that such
models could be used to refine a large number of potential
drug candidates to produce a more manageable number to
characterise experimentally. It could also be argued that
rather than focussing solely on the physicochemical param-
eters of the penetrants, it may be the case that additional
descriptors, including those relating to the biological matrix
itself and the properties of the system in which the candidate
molecule is applied are required to accurately model the
absorption process. In addition, it is important to note that
although such predictive models have been considered to be
beneficial in providing an early estimation, prediction, and
simulation of skin absorption, particularly during drug dis-
covery, they do not take into account actual relative drug can-
didate potencies. The reality is that for any drug applied
topically for the treatment of localised skin disease its efficacy
is not only dependent upon its ability to penetrate the skin
but its potency at the active site. As such the half maximal
inhibitory concentration/half maximal effective concentra-
tion of the candidate molecules need to be considered. Such
data demonstrated that when selecting candidate molecules
for topical formulation development their ability to penetrate
the skin (whether theoretical or experimentally derived),
relative potencies, metabolism, solubility, stability and poten-
tial toxicity all need to be taken into account in the initial
screening process.
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